Microplastics measurement intercalibration study

Charles S. Wong¹, Scott Coffin², and Steve Weisberg¹

¹Southern California Coastal Water Research Project Authority ²California State Water Resources Control Board

Background

- □ SB 1422 (fall 2018) requires microplastic monitoring in drinking water starting in 2021
 - SB 1263 requires statewide management strategy for microplastics in coastal waters
- This is a significant challenge
 - Achieving mandates requires adoption of state-approved measurement methods
 - Methods must be scientifically sound, and technologically and logistically feasible

Challenges

- Developing standard methods is often a very long process
 - Which method(s) to standardize?
 - > What are procedures for standardization, including data management?
 - > Perform inter-laboratory studies to quantify method performance
 - > Refine methods to reduce variability and repeat
- Not clear yet what to measure (size, shape, polymer type, etc.)
- Little consensus yet in measuring microplastics
 - > Legislative requirement is a way to meet significant need for consensus
 - Difficult to provide big-picture assessment otherwise
 - But challenging to do in (original) 2-year timeframe!

SCCWRP intercalibration study foundation

- Measure known blind samples processed by participating labs
 - Using standard methods for several candidate methods
 - > Quantify **accuracy**: differences from knowns as function of parameters
 - Quantify **precision**: repeatability
- Quantify technical method capabilities and limitations
 - > From same laboratory
 - > From experienced laboratories
 - > From labs with different levels of experience
- Quantify feasibility by tracking resources needed
 - Personnel time to implement
 - Cost of expendable supplies
 - Capital costs for equipment

accuracy

precision

Five major methods used

- SCCWRP workshop in April 2019 invited experts to select candidate methods, and draft SOPs
 - Visual microscopy
 - Visual microscopy with fluorescence staining (Nile Red)
 - Fourier-transform infrared spectroscopy (FTIR)
 - Raman spectroscopy
 - Pyrolysis gas chromatography-mass spectrometry (pyro)

Blind samples

- Several types of polymers
 - > Polystyrene, polyethylene, PVC, PET
- Four size fractions
 - > 1-1000 um
 - > 1-20 um, 20-212 um, 212-500 um, >500 um
- Several morphologies
 - > Pellets, fragments, spheres, fibers
- False positive materials
 - Look like synthetic polymers, but aren't
 - Examples: sand, shell fragments, natural fibrous material (cotton, cellulose, bunny fur)

Matrices for blind samples

- Clean water matrix
 - Proxy for drinking water
 - > Lab work and analysis complete
- Dirty water matrix
 - Proxy for surface water
- Sediment matrix
- Fish tissue matrix

Data submitted end of May data analysis and interpretation in progress

Participating labs

- 40 participating laboratories in 6 countries
 - > 26 for drinking water
- Mix of academic, government (federal, state/provincial, county, municipal), and private-sector labs (industry and consulting)
- Highly experienced labs to novice organizations
- Generally 3-22 laboratories per method

General flow of lab work

Blind Samples Particle Extraction

Particle Identification & Categorization

Pictures & Measurements

Chemical Analysis

SOP for processing simulated clean water blind samples

The big (initial) picture for clean water matrix

Total plastic particle spike

Initial performance at a glance

Recovery much more accurate for size fractions >20μm

Recovery with (left) and without (right) inclusion of 1-20µm size fraction

Experience matters across the board!

Training at SCCWRP and following the SOP improved recovery

Did you train at SCCWRP?

>20µm size fractions

Did you deviate from the SOP?

>20µm size fractions

Accuracy of FTIR spectroscopy for chemical ID

- High overall accuracy (plastic and natural combined), 95%
- Highly accurate ID of all spiked polymer types (>90%)
- Novice labs can get accurate results
- Accurate ID down to 20 um

Accuracy of Raman spectroscopy for chemical ID

- Overall accuracy (results for plastic and false positives combined): 86%
- Highly accurate for identifying plastic: 91%
- Novice labs can get accurate results
- High accuracy among all size fractions 84-100%

Products from SCCWRP intercalibration study

- Performance characteristics for measurement methods
- SOPs for methods
 - Now refined by participating labs to achieve consensus
- Accreditation needs for labs doing monitoring work
 - We understand performance characteristics
 - We know what a good lab can achieve
 - We work with ELAP to develop this

Other matrices

- Drinking water is only one aspect of intercalibration study
 - Parallel Core Study and Augmentations on simulated surface "dirty" water, sediment, fish tissue
- Helps address SB 1422 for statewide strategy to manage microplastics in coastal waters
- Data submitted by participants at end of May

Accreditation

- Need to ensure that labs can acceptably process samples for microplastics
 - Utilities
 - Contract labs
- Part of process is working with California Environmental Laboratory Accreditation Program (ELAP)
 - > Recommendations for certifying labs to analyze microplastics in drinking water
 - Inspections, recordkeeping, Performance Evaluation Samples
 - Training of ELAP staff on how these steps in lab certification pertain to microplastics

What's next?

- Disseminate results from clean water matrix
 - Special Issue of journal Chemosphere dedicated to this
 - Presentation by Dr. Scott Coffin to State Water Board (September)

- Data analysis and interpretation for other matrices (mid-August)
 - Manuscript in Chemosphere Special Issue

ELAP accreditation development (this fall)

Thank you!

- □ For more information on the SCCWRP microplastics measurement workshop in 2019:
 - https://www.sccwrp.org/about/research-areas/additional-research-areas/trash-pollution/measuring-microplastics-workshop/